
RESEARCH ARTICLE  OUSL Journal, 2018 

                                                                   Vol. 13, No. 01 (pp. 65-91) 

 

 

Tourist Arrivals in Sri Lanka: A Comparative Study of 

Holt- Winter’s versus Box- Jenkin’s Modeling Methods 

 
Sebastian Reyalt Gnanapragasam1* 
 
1Department of Mathematics, Faculty of Natural Sciences, The Open 

University of Sri Lanka, Nawala, Sri Lanka 

 

Abstract 

Tourism is one of the vastly growing and largest industries in the 

world. Contribution of tourism to Sri Lanka’s total foreign exchange 

earnings in 2016 amounted to 14.2%. After the civil strife in Sri 

Lanka, tourist arrivals continue to grow annually. Therefore, the 

post- conflict tourist arrivals were considered for this study. 

Forecasting is an essential analytical tool in tourism policy and 

planning. In all the regions at all times, there is no specific model 

that outperforms other models regularly. Therefore, the objective of 

this study is to compare Holt-Winter’s and Box- Jenkin’s methods 

of modeling the tourist arrivals and to recommend a better method 

to forecast the future tourist arrivals in Sri Lanka. Appropriate 

tests were applied in modeling exercises for both methods. The 

results demonstrate that, during June 2009 to June 2017, nearly 

10.5 million of tourists had visited the island. Both models are 

adequate for forecasting tourist arrivals. However, based on the 

forecasting accuracy measures of the model, the Box-Jenkin’s 

method outperforms the Holt- Winter’s method. The Box- Jenkin’s 

model gives approximately 90% forecasting accuracy and therefore 

it is recommended to forecast the tourist arrivals in Sri Lanka. 
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Accordingly, around 1.15 million of tourists arrived in Sri Lanka in 

the second half of the year 2017, and it is about 5.7% increase 

compared to the same period in 2016. Further, over 235,000 

tourists arrived in December 2017, which was the highest monthly 

arrival in the history of Sri Lanka tourism so far. 

Keywords: Box- Jenkin’s, Holt- Winter’s, Tourist arrivals 

 

Introduction 

Tourism is one of the fastest growing industries in the world. It 

contributes to economic development of a country in terms of 

generating foreign exchange earnings and employment 

opportunities. After identifying the need to set up an institutional 

framework, in 1966, the government of Sri Lanka decided to 

develop tourism in a planned and a systematic manner. As a 

result, currently tourism in Sri Lanka is managed by Sri Lanka 

Tourism Development Authority (SLTDA). In Sri Lanka, the tourism 

sector continues to perform well and is able to retain its rank in the 

third level as one of the main sources of foreign exchange earners 

for the national economy. According to the Annual Statistical 

Report 2016 of SLTDA, the contribution of the tourism to Sri 

Lanka’s total foreign exchange earnings in 2016 amounted to 

14.2%. 

 

Sri Lanka has always been a tourist destination due to its natural 

beauty and uniqueness. It has continued to attract foreign 

investors and tourists since its independence in 1948. Though 

from the beginning, tourist arrivals in the island continued to grow 

annually, Sri Lanka had some setbacks in this sector due to factors 

such as Tsunami in 2004, world economic crisis in 2009 and 

mainly due to uncertainty in security during the ethnic conflict 

from 1983 to 2009. The studies of Gnanapragasam and Cooray 

(2016); Gnanapragasam, Cooray and Dissanayake (2016), have 

shown that, there was a dramatic growth in tourist arrivals in Sri 

Lanka after June 2009. Therefore, in this study, only the post-

conflict series of tourist arrivals is taken for the analysis.   

Forecasting is an essential analytical tool in tourism policy and 

planning. These decisions have to be taken by the relevant 
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authorities in a way that facilitates the needs of the future tourists 

in Sri Lanka. Song and Li (2008) had done a comprehensive review 

of published studies from the year 2000 on tourism demand 

modelling. One of the important results in this review is that the 

methods used in analyzing and forecasting the demand for tourism 

had been more varied. Further, this review showed that, as far as 

the forecasting accuracy is concerned, there is no single model that 

consistently outperforms than other models in all aspects. 

Therefore, it recommends the application of several modeling 

methodologies to forecast the tourism demand, and identify the 

best model based on the forecasting accuracy. 

 

Post- conflict tourism demand in Sri Lanka was forecast using 

different methodologies by some researchers in the past. 

Kurukulasooriya and Lelwala (2014) had used the classical 

decomposition method and it showed a forecasting accuracy of 

96%. In the study of Gnanapragasam and Cooray (2016), the 

dynamic transfer function modeling method was tried out with 

91.37% forecasting accuracy. Further, the method of state space 

with 94.05% forecasting accuracy was employed by another study 

of Gnanapragasam et al. (2016). Moreover, Autoregressive 

Integrated Moving Average (ARIMA) and decomposition modeling 

methods were compared in the study of Ishara and Wijekoon 

(2017) and they recommended that the decomposition method 

performed well in terms of accuracy of the fitted models.  

 

The exponential smoothing method was applied for the modeling 

exercises, for forecasting tourist arrivals in different regions in 

some parts of the globe, in the following studies. Bermudez, Segura 

and Vercher (2007) argued that the additive Holt–Winters model 

was inappropriate if the seasonal components or the error variance 

depend on the level of the series, but it could also be useful after 

an adequate data transformation for the UK air passenger data. In 

the study of Witt, Newbound and Watkins (1992) showed that the 

exponential smoothing generates method forecasts with lower error 

magnitudes than other modeling methods for Las Vegas arrivals 

data. In Lim and McAleer (2001) study too, the Holt–Winters 

additive and multiplicative seasonal models outperformed the other 

models in forecasting arrivals to Australia from Hong Kong, 
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Malaysia and Singapore. Akuno, Otieno, Mwangi and Bichanga 

(2015) had compared two models based on the accuracy of the 

models and it was identified that double exponential smoothing 

model was better than ARIMA modelling to forecast tourist arrivals 

in Kenya. The common theme of those studies suggests that, 

generally forecasting accuracy is high in exponential smoothing 

modelling and this approach obtains a level of accuracy 

comparable to those of other more sophisticated models. 

 

However, in some previous studies on tourism demand for different 

countries in the world, it is recommended that ARIMA modeling 

method is the most accurate method for forecasting tourist 

arrivals. Cho (2001) said that univariate ARIMA is a more suitable 

method and can be applied to forecast the fluctuating series of 

visitor arrivals from different countries to Hong Kong. The results 

of Chu (1998) showed that the accuracy of the forecasts differs 

depending on the country being forecast, but that the ARIMA 

model is the most accurate method for forecasting international 

tourist arrivals in Asian- Pacific countries. Loganathan, 

Nanthakumar and Yahaya (2010) recommended that ARIMA model 

with seasonal effects approaches had offered valuable insights and 

provided reliable forecasts of tourism demand in Malaysia. Analytic 

results of the study of Chang, Hsueh and Tian (2011) 

demonstrated that ARIMA outperformed other approaches in terms 

of accuracy of models and provided effective alternatives for 

forecasting tourism demand with evidence from Taiwan. The 

results of Saayman and Saayman (2010) showed that seasonal 

ARIMA models deliver the most accurate predictions of arrivals in 

South Africa and it further indicated that the methods that take 

into account the seasonality of international tourist arrivals 

outperform the others in terms of forecasting accuracy. According 

to the preliminary analysis of Gounopoulos, Petmezas and 

Santamaria (2012), the ARIMA model outperforms other 

exponential smoothing models as a directional forecasting tool for 

tourist arrivals in Greece. The results of Chaitip, Chaiboonsri and 

Mukhjang (2008) confirmed that the best forecasting method based 

on the structural modelling methods for international visitor 

arrivals in Thailand that established a single variable is the 

seasonal ARIMA.  
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 From these past studies it can be concluded that, in all the regions 

at all times, there is no specific model that outperforms other 

models regularly. Also, some of them recommend Holt-Winter’s is 

the better method while the others recommend the Box- Jenkin’s 

as the better method. Therefore, the objective of this study is to 

compare Holt-Winter’s and Box- Jenkin’s methods of modeling the 

tourism demand and to recommend a better method based on the 

accuracy of the model to forecast the future tourism demand for Sri 

Lanka. 

 

For this study, monthly tourist arrivals from June 2009 to June 

2017 were extracted from the Statistical Annual Reports of SLTDA. 

To develop the models by both methods, the series from June 2009 

to December 2016 were used, whereas the arrivals from January 

2017 to June 2017 were used for the validation of the fitted 

models. 

 

Materials and Methods 

Preliminary analysis 

The following techniques were carried out to check the behavior of 

the series, or in other words, to check the stationary condition of 

the series, before developing any models as the preliminary 

analysis. Eviews and MINITAB software were used to get the output 

of the results. In this subsection, Yt  is defined as the response 

variable at the time t . 

Inspecting the behavior of the series 

The plot of time series is generally used to get an idea about the 

series and its behaviour. Also, it is used to inspect extreme 

observations, missing data, and elements of non-stationary such as 

trend or seasonality or cyclic pattern or irregular variations. 

Testing unit root  

Augmented Dickey- Fuller (ADF) test is used to test whether the 

series has a unit root. Also, it is used to confirm, statistically, that 

the stationary of the series in terms of trend availability. 
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Test statistic for the model 1Y Y ut tt= +
−

  and 1 1−   , is 

ˆ
~ 1ˆ( )

DF tnSE




=

−
,
 

where ut  is the white noise and n
 

is the 

number of observations. The hypothesis to be tested here is:  H0: 

series has unit root
 ( )1=  versus H1: series has no unit root

 

( )1 . 

Testing seasonality 

Kruskal- Wallis test is used to confirm, statistically, the existence of 

seasonal pattern in the series. The hypothesis to be tested in this 

test is: H0: series has no seasanality versus H1: series has 

seasonality. The test statistic ( )H
 
of Kruskal- Wallis test is defined 

as:  

2
12 23( 1) 1( 1) 1

n Ri iH N LN N ni i
= − + −+ =

, where N  is the total number 

of rankings, Ri  is the sum of the rankings in a specific season, ni  

is the number of rankings in a specific season and L
 
is the length 

of season.  

 

Determining the nature of the process  

Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) are examined to determine the nature of the 

process under consideration. If both ACF and PACF decay 

exponentially then the series is stationary. 

 ACF at lag k is defined by 
( )( )

( ) ( )

ˆ ˆcov

ˆ ˆvar var

Y Y Y Yt t t k t k
k

Y Y Y Yt t t k t k



 − −
+ + =

− −
+ +

.

  

If the first several autocorrelations are persistently large in the 

graph of ACF and trailed off to zero rather slowly, it can be 

assumed that a trend exists and hence the time series is non-

stationary.  
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PACF between andY Yt t k+  
is the conditional correlation between 

andY Yt t k+  
and defined as follows:  

( ), 1, 2,..., 1corr Y Y Y Y Yt t k t t t kkk = + + + + − .
  

Transforming to stationary series 

The differencing method is employed to transform the non-

stationary series into a stationary series so as to improve the 

forecasting performance as follows: 

Regular differencing: If the series has a trend then by taking first 

difference (or at most 2 differences) the trend can be eliminated 

from the series and it is defined as W Y Yt t t L= −
−

, where 1or 2L = . 

Seasonal differencing: In this method, differences are taken at 

seasonal lags. If the spikes appear repeatedly in the ACF graph at 

particular lags, then it can be assumed that there is a seasonal 

pattern in the series. It is defined as: W Y Yt t t L= −
−

, where  L
 
is the 

length of the season. 

Developing Holt-Winter’s modelling method 

Exponential Smoothing is a method of forecasting that induces 

historical patterns such as trends and seasonal patterns into the 

future. An exponentially weighted moving average refers to a 

weighted moving average of the series in which the weights decay 

exponentially. 

Single Exponential Smoothing (SES) method is used for short-term 

forecasting, usually just one period into the future. The model 

assumes that the series fluctuates around a reasonably stable 

mean (no trend or consistent pattern of growth). 

Double Exponential Smoothing (DES) method is used when the 

series shows a trend. This method with a trend works much like 

SES except that two components (level and trend) must be updated 

each period. 

Holt-Winter’s Seasonal Exponential Smoothing Method is used 

when the series shows trend and seasonality. To handle 

seasonality, a third parameter is added in addition to the 

parameters in DES. Depending on the type of seasonality, 
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multiplicative and additive seasonal models can be developed. This 

method is relatively good for short-term forecasting. To apply this 

method, there is no need for large amounts of historical data and 

also it is the preferred forecasting technique by many statisticians.   

The multiplicative Holt-Winter’s model containing linear trend is 

represented as ( )Y a b t St t t t t = +  , whereas the additive Holt-

Winter’s model containing linear trend is represented as 

( )Y a b t St t t t t= + + + , where at ,  bt  
and St  

are the level, slope and 

seasonal component smoothing constant respectively and t  
is the 

error term at the time t . 

Estimating smoothing constant is the most important part of an 

Exponential Smoothing Method. It is recommended by Gardner 

(1985) that, in practice, to compute forecasts the Optimum 

Smoothing Constants must be used. The common approach is to 

work with several values of smoothing constants and select the 

best combination which produces the minimum Sum of Squares of 

Errors (SSE) for the evaluation criteria used. This procedure is time 

consuming and thus the grid search algorithm in STATISTICA 

software is used to determine the smoothing constants.  

Grid search algorithm 

One common method to estimate the smoothing constants is to 

perform a grid search of the parameter space. Thus, STATISTICA 

provides each parameter from the minimum (from zero) to 

maximum (to one) by incrementing step by step. For each 

combination of parameter values, STATISTICA computes SSE. The 

STATISTICA provides the estimates of best 10 combinations of 

smoothing constants in the ascending order of SSE.  In addition to 

this, the values are chosen by setting the initial values as 0.01 and 

incremental step value by 0.1 or 0.05 for all the cases. 

Developing Box- Jenkin’s modelling method 

A model with combinations of Auto-regressive (AR) terms and 

Moving Average (MA) terms are generally called as Auto Regressive 

Moving Averages ( ARMA ) model. The formulation of an ARMA 

process is given as: 
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... ...0 1 1 2 2 1 1 2 2Y Y Y Yp qt t p t t qt t t t          = + + + + + − − − −− −− − − −
, 

where 0 is a constant, i  is an autoregressive parameter of order 

i , j is a moving average parameter of order j and t is the error 

term at time t . If the series has a trend, it can often be converted 

to a stationary series by differencing and it is generally denoted as 

( )ARIMA , ,p d q , where p and q  are the order of autoregressive 

and moving average processes respectively and d  indicates the 

amount of differencing.  

In some cases, the series shows a repeating or cyclic behavior. 

These seasonal patterns can be very effectively used to further 

improve the forecasting performance. A seasonal ARIMA (SARIMA) 

model or ( )( )ARIMA , , , ,p d q P D Q susually contains: regular 

( )AR p and ( )MA q  terms that account for the correlation at low 

lags. Seasonal ( )AR P  and seasonal ( )MA Q  terms that account for 

the correlation at the seasonal lags where d , D  and S indicate the 

amount of regular differencing, seasonal differencing and 

seasonality respectively. 

Checking model adequacy 

Diagnostic tests are performed to determine the adequacy of the 

model. After identifying the tentative models, the following tests are 

applied to check whether the underlying conditions of diagnostic 

checking are satisfied by the fitted model. The necessary conditions 

of diagnostic checking are the residuals of the fitted models should 

be distributed normally and independently with constant variance. 

In this study, the following tests are employed to check those 

conditions: 

Testing normality of residuals 

Anderson Darling (AD) test is used to test, if a sample of data comes 

from a population with a specific distribution. Here the hypotheses 

to be tested are: H0: the data follow normal distribution versus H1: 

the data do not follow normal distribution. The test statistic of AD 

test is: 
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( )2 1
ln ( ) ln(1 ( ))11

N i
AD N F Y F Yi N iNi

 
  

−
= − − + − + −=

, where F
 

is the 

cumulative distribution function of the specified distribution, Yi
 

are the ordered data and N
 
is the total number of observations. In 

addition to the AD test, the normal probability plot is also obtained 

to check the normality condition of the residuals. If the plot looks 

fairly straight, or in other words if it is almost linear, then it can be 

assumed that the residuals are normally distributed. 

Testing independency of residuals 

One of the most important tests for detecting serial correlation is 

Durbin Watson (DW) statistic. DW statistic is used to test for 

randomness of residuals. The test statistic is defined as: 

( )
2

ˆ ˆ
12

2ˆ
1

n
u ut ttd n

utt

− −==


=

, where ˆtu
 
is the white noise of a fitted model. The 

DW closer to 2 reveals that the residuals are free from serial 

correlation. Further to DW statistic, the plot of standard residuals 

versus fitted values is also obtained to check the independency of 

residuals. If this plot shows random pattern and it almost lies 

within 2
 

limits, then it can be claimed that the residual is 

distributed independently. 

Testing heteroscedasticity of residuals 

White’s general test is used in order to check the constant variance 

of residuals. Accordingly, the null hypothesis is: H0: 

Homoscedasticity against the alternative hypothesis H1: 

Heteroscedasticity. The test statistic of the White’s general test is: 

2 2W nR df= , where df is the number of regressors in the 

auxiliary regression, 2R  is the coefficient of determination and n  is 

the number of observations of the dependent variable. The plot of 

standard residuals versus order of the observations is also 

obtained to check the constant variance of residuals, in addition to 

the White’s general test. Suppose this plot looks symmetric about 

zero without any systematic patter and it almost lies within 2
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limits, then it can be stated that the residuals have constant 

variance. 

Selecting best model 

In some situations, two or more models could satisfy all the 

conditions of the diagnostic checking. In such situations, to select 

the best model among those significant models, the following 

criterions are applied: 

 

Akaike Information Criterion (AIC) is often used for model selection. 

For sample size n , the expression of AIC is given by: 

( )2ˆAIC( ) ln 2= +k n k , where k  is the number of parameters in the 

model and 2̂  is the sample variance of the residuals.  

 

Schwartz’s Bayesian Criterion (SBC) is another widely used 

technique for model selection. For sample size n , the expression of 

SBC is given as: ( )2ˆSBC( ) ln ln( )= +k n k n , where k  is the number 

of parameters in the model and 2̂  is the sample variance of the 

residuals. Generally, the best model is the one which gives the 

lowest AIC and SBC values. 

Forecasting accuracy of the model 

To check the forecasting accuracy of the fitted model, the Mean 

Absolute Percentage Error (MAPE) is employed. It is generally used 

for the evaluation of the forecast against the validation sample. To 

compare the average forecast accuracy of different models, MAPE 

statistic is used and it is defined as follows: 

ˆ1
MAPE 100

1

−
= 

=

n Y Ytt
n Yt t

, where Yt and Ŷt are the observed and 

predicted values at the time t  respectively.  

 

According to Lewis (1982), the forecasting accuracy of the fitted 

model is high when MAPE value is less than 10%. However, if the 
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value of MAPE is in between 10% and 20%, then it is a good 

forecasting. 

 

Results and Discussion 

Behavior of the series 

It is well known that stationary series are necessary to fit Box- 

Jenkin’s and Holt- Winter’s models for better forecasting 

performance. Therefore, the stationary condition of the original 

series of the tourist arrivals, after the civil conflict, to Sri Lanka is 

tested in this subsection before fitting any models. For this 

purpose, the entire series from June 2009 to June 2017 is used. 

 

The Figure 1 represents the time series plot of tourist arrivals after 

the civil conflict in Sri Lanka. 
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Figure 1: Time series plot of tourist’s arrivals 

It is noted from the plot of the time series of tourist arrivals in 

Figure 1 that there are no any extreme observations. Also, this plot 

clearly shows an upward trend. Further, it can be observed that, 

after every 12th point, there is a peak point, marked as A, B, C and 

D in Figure 1 (it repeats after every 12th month). It is a clear 

indication of the existence of seasonality in the original series. 

Since there is a trend and a seasonal pattern in the plot in Figure 

A 

B 
C 

D 

76



Tourist Arrivals in Sri Lanka: A Comparative Study of Holt- Winter’s versus Box- Jenkin’s 

Modeling Methods 

 

1, the original series is non-stationary and therefore it has to be 

converted to a stationary series. For this purpose, differencing 

method is employed. 

 

The first regular difference of the original series is taken and the 

plot of the 1st regular differenced series is shown in Figure 2. 
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Figure 2: Plot of 1st regular differenced series 

 

It seems from Figure 2 that there is no trend in the 1st regular 

differenced series. It is confirmed through the statistical test in 

Table 1 as well. It is further observed from Figure 2 that, after 

every 12th point, there is a peak point, marked as E, F, G and H in 

Figure 2 (it repeats after every 12th month). It further suggests that 

there is a seasonal pattern in the 1st regular differenced series. 

Therefore, the 12th seasonal difference is taken from the 1st regular 

differenced series and the plot of the 12th seasonal differenced is 

plotted in Figure 3. 

There is no clear indication of a trend or a seasonal pattern in 

Figure 3. It can be assumed that the 12th seasonal differenced 

series is stationary and it is statistically confirmed in Table 1.  

E 
F G H 
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Figure 3: Plot of 12th seasonal differenced series 

 

Figure 4 shows the plot of the autocorrelation function of the series 

obtained after the first regular difference. Particularly, this regular 

differencing is taken to remove the trend in the original series. 
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Figure 4: ACF for 1st regular differenced series 

The ACF of the 1st regular differenced series shown in Figure 4 is 

not decaying exponentially and there are some high spikes that 

repeatedly appear in the middle. Therefore, it can be concluded 

that the 1st differenced series is also a non-stationary series. It can 

be further confirmed from the p-values of ADF (0.00) and Kruskal- 
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Wallis (0.00) tests in Table 1 that the 1st regular differenced series 

is also non-stationary. 

The Table 1 summaries the p-values of ADF and Kruskal- Wallis 

tests for the 1st regular difference and the 12th seasonal differenced 

series and the decision on the stationary condition based on those 

p-values. 

 

Table 1: Summary of stationary conditions of the series 

 

Behavior 

 

Test 

p-values (decision) for the series 

1st regular 

differenced  

12th seasonal 

differenced  

Trend Augmented Dickey- 

Fuller (ADF) 

0.00 

(No trend) 

0.00 

(No trend) 

Seasonality Kruskal- Wallis 0.00 

(Seasonality Exists) 

0.53  

(No seasonality) 

Decision on stationary 

condition 

Non- stationary Stationary 

 

Moreover, at 12th, 24th and 36th lags high spikes can be seen in the 

ACF of the 1st regular differenced series in Figure 4. This seasonal 

pattern suggests that, this series has seasonality with length 12. 

Therefore, to remove this seasonality, again a 12th seasonal 

difference is taken and the relevant ACF plot is shown in Figure 5. 
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Figure 5: ACF for 12th seasonal differenced series 
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It can be seen from the ACF for 12th seasonal differenced series in 

Figure 5 that in almost all the lags, except one at the beginning 

spikes, are not significant. It seems this transferred series is 

stationary. Nevertheless, graph of PACF is also obtained for the 

12th seasonal differenced series and it is shown in Figure 6. 
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Figure 6: PACF for 12th seasonal differenced series 

 

Now from ACF plot in Figure 5 and PACF plot in Figure 6, it can be 

claimed that, 12th seasonal differenced series is stationary. At the 

same time, the p-values of ADF (0.00) and Kruskal- Wallis (0.53) 

tests in Table 1 strongly confirm that, the newly generated series 

by taking the 12th seasonal difference is stationary. Thus, this 

converted series now can be used to fit both Holt- Winter’s and 

Box- Jenkin’s models.  

Developing the Holt-Winter’s model 

Grid search algorithm in STATISTICA is used to estimate relevant 

smoothing constants.  In this algorithm the values are chosen by 

setting the initial values as 0.01 and incremental step value by 0.1 

and 0.05. Both additive and multiplicative seasonal model types 

are considered in the Holt- Winter’s method. The 1st choice among 

the best 10 combinations of smoothing constants based on the 

ascending order of sum of squares of errors in both model types are 

taken. Hence the smoothing constants corresponding to both 

model types with MAPE values are summarized in Table 2 as 

follows:  
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Table2: Estimates of smoothing constants of the Holt-Winter’s   

  models 

 

As far as the MAPE values are concerned, the additive seasonal 

model of the Holt- Winter’s method is selected as the best model in 

this case. Therefore, the smoothing constants 

0.15, 0.10, 0.10and  = = =  are obtained and the diagnostic 

checking to test the adequacy of the fitted Holt-Winter’s additive 

model is carried out as follows: 

 

Model Type Estimates of smoothing constants MAPE 

Additive 0.15, 0.10, 0.10  = = =  13.61 

Multiplicative 0.25, 0.05, 0.05  = = =  18.27 
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Normality testing of the fitted Holt-Winter’s model 
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Figure 7: Normal probability plot of residuals of the Holt-Winter’s 

model 

It is noted from Figure 7 that the normal probability plot is fairly 

straight and therefore it can be claimed that the residuals of the 

Holt-Winter’s model are normally distributed. Further the p-value 

(0.793) of Anderson Darling test very strongly confirms the result 

that the distribution of the residuals is normally distributed. 

Therefore, the first condition of the diagnostic checking is satisfied 

by this Holt-Winter’s model. 

Independency testing of the fitted Holt-Winter’s model 

The points in the plot of standard residuals versus fitted values in 

Figure 8 are scattered randomly and it almost lies within 2
 

limits. Hence it can be stated that, the residuals of the Holt-

Winter’s model are independent. Therefore, the second underlying 

assumption of the significant model is also satisfied as there is no 

serial correlation among the residuals of this Holt- Winter’s model. 
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Figure 8: Plot of Standard Residuals vs Fitted Values of the Holt- 

Winter’s model 

Heteroscedasticity testing of the fitted Holt-Winter’s model 

Since the plot of standard residuals versus observations order of 

Holt- Winter’s model in Figure 9 is almost symmetric about zero 

and within 2
 
limits, and as there is no any systematic patter, it 

can be confirmed that the variance of the residuals is constant. 

Hence, the third condition of a significant model is also satisfied. 

Therefore, there is no heteroscedasticity in the residuals of the 

fitted Holt- Winter’s model. 
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Figure 9: Plot of Standard Residuals vs Observations Order of the 

Holt- Winter’s model 
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The residuals are independent and normally distributed without 

the heteroscedasticity. It suggests that, the model satisfies the 

requirements of the diagnostic checking. Therefore, it can be 

concluded that, the Holt- Winter’s additive seasonal exponential 

smoothing model with smoothing constants 

0.15, 0.10, 0.10  = = =and  is significant. Thus, this model can 

be used for the purpose of forecasting the future tourist arrivals in 

Sri Lanka. 

Developing the Box-Jenkin’s model 

To develop the Box-Jenkin’s model, again the same series from 

June 2009 to December 2016 are taken into account. From ACF 

graph in Figure 5 and PACF graph in Figure 6, it can be observed 

that, the appropriate models can have 3 AR terms and 1 MA term 

as the significant spikes appear at the relevant lags in those 

graphs. Possible different models, with all the combinations of 

those terms, are tried out. The selection criterions of the significant 

models are summarized in Table 3.  

Table 3: Selection criterions of significant models 

Model AIC SBC 

SARIMA(0, 1, 1)(0, 1, 0)12 21.06 21.09 

SARIMA(1, 1, 0)(0, 1, 0)12 21.25 21.28 

SARIMA(1, 1, 1)(0, 1, 0)12 21.19 21.29 

 

Among three significant models in Table 3 which satisfy diagnostic 

checking, seasonal ARIMA(0, 1, 1)(0, 1, 0)12 model is selected as the 

best model which has the lowest AIC (21.06) and SBC (21.09) 

values. The results of the diagnostic checking only of the best 

model are described as follows: 

Normality testing of the fitted Box-Jenkin’s model 

The normal probability plot of the residuals of the Box-Jenkin’s 

model in Figure 10 is almost linear and therefore it can be stated 

that the residuals of the model is normally distributed. Further, the 

p-value (0.548) of Anderson Darling test confirms that the 

distribution of the residuals is normal. Therefore, it can be 

concluded with 95% confident that the residuals of the Box- 
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Jenkin’s model are normally distributed and it satisfies the first 

condition of the diagnostic checking. 
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Figure 10: Normal probability plot of residuals of the Box- Jenkin’s 

model 

Independency testing of the fitted Box-Jenkin’s model 

It can be seen from Figure 11 that, the plot of standard residuals 

versus fitted values of the Box- Jenkin’s model is scatted randomly 

and it almost lies within 2
 
limits. Therefore, the residuals are 

independent. Moreover, the Durbin Watson statistic (1.99) confirms 

that the residuals have no serial correlation. Therefore, the 

residuals satisfy the second condition of diagnostic checking that 

there is no serial correlation among the residuals of the Box-

Jenkin’s model. 
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Figure 11: Plot of Standard Residuals vs Fitted Values of the Box 

Jenkin’s model 

Heteroscedasticity testing of the fitted Box-Jenkin’s model 

There is no any systematic patter in the plot of standard residuals 

versus observations order of the Box-Jenkin’s model in Figure 12; 

it is symmetric about zero and it almost lies within 2
 
limits. 

Therefore, it can be claimed that the residuals of the model have 

constant variance. At the same time, the p- value (0.67) of White’s 

general test strongly confirms that there is no heteroscedasticity. 

Therefore, it can be concluded with 95% confidence that, the 

variance of residuals is constant and thus no heteroscedasticity 

exists. 
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Figure 12: Plot of Standard Residuals Vs Observation Order of the 

Box-Jenkin’s model 
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All three underline assumptions of the diagnostic checking are 

satisfied by the fitted Box-Jenkin’s model. Therefore, this model is 

significant and it can be used for the purpose of forecasting future 

tourism demand for Sri Lanka. 

Validating the fitted models 

To check the model validation as the accuracy of the fitted model, 

the series from January 2017 to June 2017 are taken into account. 

Predicted values from both Holt-Winter’s and Box-Jenkin’s models 

are, separately, obtained in this particular period and which are 

summarized in Table 4 as follows:  

Table 4: Observed and predicted tourist arrivals in Sri Lanka 

 

Month in 

2017 

 

Observed 

Arrivals 

Predicted Arrivals 

Holt- Winter’s 

Model 

Error % Box- Jenkin’s 

Model 

Error 

% 

January 219,360 197,537 9.95 215,033 1.97 

February 197,517 198,439 0.47 218,450 10.60 

March 188,076 196,252 4.35 213,594 13.57 

April 160,249 167,743 4.68 157,120 1.95 

May 121,891 156,555 28.44 145,797 19.61 

June 123,351 165,012 33.77 138,791 12.52 

MAPE 13.61 10.04 

 

As far as the accuracy of the model is concerned based on the 

MAPE values in Table 4, both are good models. On the one hand, 

MAPE value of the Box- Jenkin’s model is approximately 10% and 

therefore the accuracy of that model is very high. On the other 

hand, the MAPE value of the Holt- Winter’s model is approximately 

14% and its accuracy also good. However, when compared with 

MAPE values, the Box- Jenkin’s method performed better than the 

Holt- Winter’s method in terms of forecasting accuracy of the 

model. Therefore, the Box- Jenkin’s model is recommended to 

forecast future tourism demand for Sri Lanka. 
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Forecasting future tourist arrivals in Sri Lanka   

The Figure 13 represents the monthly-wise forecast of tourism 

demand by the method of the Box- Jenkin’s from July 2017 to 

December 2017. 

 

Figure 13: Monthly-wise forecast of tourist arrivals by the Box 

Jenkin’s model 

 

According to the month-wise forecast of tourism demand by the 

method of Box- Jenkin’s model in Figure 13, in the month of 

December 2017 more than 235,000 tourists will arrive to Sri Lanka 

and which will be not only the highest monthly arrival for that 

year, but also the highest monthly arrivals in the history of Sri 

Lankan tourism so far. In the meantime, a lower number of 

tourists will come in the months of September and October in the 

year 2017. On the average, nearly 192,000 tourist arrivals per 

month are estimated for the second-half of the year 2017. Nearly 

1.15 million of tourists will arrive in the second-half of the year 

2017, which is 5.7% increase compared to the arrivals in the 

second-half of the year 2016. 

 

Conclusions and Recommendations 

Based on the series of tourist arrivals from June 2009 to June 

2017, nearly 10.5 million of tourists had visited the island after the 

civil conflict in Sri Lanka. Accordingly, on the average, nearly 

108,000 visitors per month had come to Sri Lanka as tourists. 
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Both models fitted by the methods of Holt- Winter’s and Box- 

Jenkin’s are significant. However, based on the forecasting 

accuracy of the model, it is concluded that the Box-Jenkin’s 

method outperforms the Holt- Winter’s method for tourist arrivals 

in Sri Lanka, after the civil conflict. Therefore, SARIMA (0, 1, 1) (0, 

1, 0)12 is recommended as the best model to forecast the future 

tourism demand for Sri Lanka.  

It can also be concluded that, in the second half of the year 2017, 

nearly 1.15 million of tourists will arrive to Sri Lanka and it is 

about 5.7% increase compared to the arrivals in the second half of 

the year 2016. Therefore, the country must be ready to cater to 

them in a professional manner such as facilitating their 

accommodations at their required level—that will increase the 

demand for tourist in the future. Hence, the tourism industry could 

contribute significantly to the country’s economy in terms of 

foreign exchange. 

It is hereby recommended that further studies should be conducted 

employing the neural network modeling method for the post conflict 

tourism demand for Sri Lanka and compare the forecasting 

accuracy of that model with the other models fitted so far in the 

same time scenario. 
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